aboutsummaryrefslogtreecommitdiff
path: root/src/Language/SimpleShell/Parser/Expr.hs
blob: 0f2f6c955617f423e899eaf51c1492ea39ea731e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TupleSections #-}

module Language.SimpleShell.Parser.Expr
  ( exprP
  , strongTermP
  , strongTermP_  -- TODO: Unused.
  )
where


import Language.SimpleShell.AST.Expr (Expr(..), TypedExpr)
import Language.SimpleShell.AST.SimpleType (SimpleType(..))
import Language.SimpleShell.Parser
  ( Parser
  , lexeme
  , symbol
  , lookupVar
  , lookupFun
  )
import Language.SimpleShell.Parser.Name (nameP, keyword)
import Language.SimpleShell.Parser.SimpleType (forceType)
import Control.Monad.Combinators.FailExpr
  ( Associativity(..)
  , makeExprParser
  , Operator(..)
  )

import Control.Applicative ((<|>))
import Control.Monad (void)
import Control.Monad.Combinators (manyTill)
import Data.Foldable (asum)
import Data.Text (Text)
import Text.Megaparsec (anySingleBut, many)
import Text.Megaparsec.Char (char)
import qualified Text.Megaparsec.Char.Lexer as L (charLiteral, decimal)


exprP :: Parser TypedExpr
exprP
   =  makeExprParser weakTermP binaryOperatorTable

weakTermP :: Parser TypedExpr
weakTermP
   =  strongTermP
  <|> unaryOpP
  <|> builtinUnaryFunP
  <|> funP

strongTermP :: Parser TypedExpr
strongTermP
   =  literalP
  <|> varP
  <|> symbol "(" *> exprP <* symbol ")"

-- | Parse a strong term--assuming its correctness--without yielding a result.
--   This basically only checks for matching parentheses.
strongTermP_ :: Parser ()
strongTermP_
   =  void literalP
  <|> varP_
  <|> symbol "(" *> void (many tok) <* symbol ")"
  where
    -- Notes:
    --  * We need to make sure to correctly handle:
    --    * parentheses
    --    * string literals
    --    * comments
    --    - Thus, `takeWhile1P` is dangerous.
    --  * This is hardly the most efficient implementation.
    --    * A more efficient implementation would use `takeWhile1P` to parse
    --      large chunks of input, but--as noted above--that is dangerous;
    --      i.e., non-trivial (albeit not really hard) to do correctly.

    tok :: Parser ()
    tok
       =  strongTermP_
      <|> void nameP    -- function names; for efficiency only
      <|> void (lexeme $ anySingleBut ')')  -- operators (i.a.; catchall)


-- | Parse "strong" term with fixed type.
strongTermP' :: String -> SimpleType -> Parser Expr
strongTermP' errMsg t = forceType t strongTermP <|> fail errMsg


literalP :: Parser TypedExpr
literalP
   =  (IntType,)  . IntLiteral  <$> lexeme L.decimal
  <|> (StrType,)  . StrLiteral  <$> strLitP
  <|> (BoolType,) . BoolLiteral <$> boolLitP
  where
    boolLitP
       =  True  <$ keyword "true"
      <|> False <$ keyword "false"

strLitP :: Parser String
strLitP = lexeme $ char '"' *> manyTill L.charLiteral (char '"')

varP :: Parser TypedExpr
varP = do
  _ <- char '$'
  x <- nameP
  t <- lookupVar x
  return (t, Var x)

varP_ :: Parser ()
varP_ = void (char '$') <* nameP

funP :: Parser TypedExpr
funP = do
  fname <- nameP
  (t', ts) <- lookupFun fname
  args <- mapM (strongTermP' "Type mismatch with function signature.") ts
  return (t', FunCall fname args)


-- Binary operators.

type BinaryFun = Expr -> Expr -> Expr
type BinarySig = SimpleType -> SimpleType -> Maybe SimpleType

binaryOperatorTable :: [[Operator Parser TypedExpr]]
binaryOperatorTable =
  [ [ binary AssocR "||" Or  $ sameSig BoolType
    ]
  , [ binary AssocR "&&" And $ sameSig BoolType
    ]
  , [ binary AssocN "==" Eq  $ anyCmpSig
    , binary AssocN "!=" Neq $ anyCmpSig
    , binary AssocN "<=" Le  $ intCmpSig
    , binary AssocN "<"  Lt  $ intCmpSig
    , binary AssocN ">=" Ge  $ intCmpSig
    , binary AssocN ">"  Gt  $ intCmpSig
    ]
  , [ Binary AssocL addP
    , binary AssocL "-"  Sub $ sameSig IntType
    ]
  , [ binary AssocL "*"  Mul $ sameSig IntType
    , binary AssocL "/"  Div $ sameSig IntType
    ]
  ]
  where
    sameSig :: SimpleType -> BinarySig
    sameSig t t1 t2 = if t == t1 && t == t2 then Just t else Nothing

    anyCmpSig t t'
      | t == t'   = Just BoolType
      | otherwise = Nothing

    intCmpSig IntType IntType = Just BoolType
    intCmpSig _       _       = Nothing

    addP :: Parser (TypedExpr -> TypedExpr -> Maybe TypedExpr)
    addP = do
      symbol "+"
      return $ \(t1, x1) (t2, x2) ->
        if t1 == t2
        then
          case t1 of
            StrType -> Just (StrType, Concat x1 x2)
            IntType -> Just (IntType, Add    x1 x2)
            _       -> Nothing
        else Nothing

    binary
      :: Associativity -> Text -> BinaryFun -> BinarySig
      -> Operator Parser TypedExpr
    binary assoc symb op sig = Binary assoc $ do
      symbol symb
      return $ \(t1, e1) (t2, e2) -> fmap (, op e1 e2) $ sig t1 t2


-- Unary operators and builtin unary functions.

type UnaryFun = Expr -> Expr
type UnarySig = SimpleType -> Maybe SimpleType
type UnaryParser = Parser (TypedExpr -> Maybe TypedExpr)

unaryOperators, builtinUnaryFuns :: [UnaryParser]
(unaryOperators, builtinUnaryFuns) =
  ( [ unaryOp  "!"      Not     $ uniqueSig BoolType BoolType
    , unaryOp  "-"      UMinus  $ uniqueSig IntType  IntType
    ]
  , [ unaryFun "length" Length  $ uniqueSig StrType  IntType
    , unaryFun "int"    IntCast $ uniqueSig StrType  IntType
    , unaryFun "str"    StrCast $ uniqueSig IntType  StrType
    ]
  )
  where
    uniqueSig :: SimpleType -> SimpleType -> UnarySig
    uniqueSig t1 t2 t1'
      | t1 == t1' = Just t2
      | otherwise = Nothing

    unaryOp :: Text -> UnaryFun -> UnarySig -> UnaryParser
    unaryOp = unary symbol

    unaryFun :: Text -> UnaryFun -> UnarySig -> UnaryParser
    unaryFun = unary keyword

    unary :: (Text -> Parser ()) -> Text -> UnaryFun -> UnarySig -> UnaryParser
    unary symbPF symb op sig = do
      symbPF symb
      return $ \(t, e) -> fmap (, op e) $ sig t

unaryOpP, builtinUnaryFunP :: Parser TypedExpr
(unaryOpP, builtinUnaryFunP) =
  ( asum $ map (aux "unary operator"         weakTermP  ) unaryOperators
  , asum $ map (aux "builtin unary function" strongTermP) builtinUnaryFuns
  )
  where
    aux :: String -> Parser TypedExpr -> UnaryParser -> Parser TypedExpr
    aux desc argP p = do
      f <- p
      x <- argP
      case f x of
        Just x' -> return x'
        Nothing -> fail $ "Mismatching " ++ desc ++ " signature."